If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.95x^2-31x+100=0
a = 1.95; b = -31; c = +100;
Δ = b2-4ac
Δ = -312-4·1.95·100
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{181}}{2*1.95}=\frac{31-\sqrt{181}}{3.9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{181}}{2*1.95}=\frac{31+\sqrt{181}}{3.9} $
| 6(x+5ä)=7x | | x+4-3x=(x-1) | | X+4-3x=4-(x-1 | | 5t2=7 | | 9x−12=3x+3(2x−4) | | 3r+5−r=−7 | | 32+6b=19 | | 3(y-8)-4=-2(-8y+7)-y | | 5=x-1+4 | | 3x-16+4x+8=60 | | b–53=1 | | 5x+12-2=9x | | x+7-3x=3 | | (4x+2x=6x)-(2x) | | 3x+3=3(x+4)-9 | | -9(n-9)=36 | | -1s+15=-13 | | 4÷7+7m÷8=95÷56 | | (3x+5)=3(x+3)-5 | | 11x+52=10x-40 | | -35=-2r-7 | | -1(1s+15)=-13 | | y+53=99 | | 7(1+n)=-12 | | Y=12+0.5x | | -3.2=t(-0.2) | | -12=10x-15 | | -3=-13+x | | -4s2–2s+9=35 | | p-23=26 | | m/9-12=-4 | | (8x-7)-18=67 |